Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Jason A. Widegren

Research Chemist, NMR Facility Manager

Dr. Widegren attended The Colorado College and graduated with a B.A. in chemistry. During the summers he did undergraduate research with Professor John L. Falconer in the Chemical Engineering Department at the University of Colorado. This undergraduate research focused on photocatalytic oxidations on titanium dioxide. Dr. Widegren's graduate studies were done in the Chemistry Department at Colorado State University with Professor Richard G. Finke. His Ph.D. thesis focused on the synthesis and catalytic properties of metal nanoparticles. After graduate school, he spent a year as a visiting professor at Adams State College, where he taught classes in general and analytical chemistry. Then Dr. Widegren accepted a NRC Postdoctoral Fellowship to study the properties of ionic liquids at NIST with postdoctoral advisor, Dr. Joseph W. Magee. He was subsequently hired as a permanent employee of NIST, and has been working for Dr. Thomas J. Bruno since that time. Dr. Widegren has published about 40 scientific articles on a wide variety of topics. Dr. Widegren is currently the NMR Facility Manager, the Group Safety Representative for the Experimental Properties of Fluids Group, and co-chair of the Boulder Laboratories Postdoctoral Poster Symposium. Outside of work, Dr. Widegren enjoys spending time with his wife and three daughters. He is an enthusiastic gardener and beekeeper.

Google Scholar Citation Page

Research Areas:

NMR Spectroscopy:

Dr. Widegren is the NMR Facility Manager for the 600 MHz nuclear magnetic resonance (NMR) spectrometer at NIST Boulder. Dr. Widegren’s own research with NMR spectroscopy has primarily involved the analysis of complex mixtures, such as are often found in fuels. Dr. Widegren is also interested in purity analysis, including quantitative NMR (qNMR), and in the use of NMR for the quantitative analysis of gas-phase mixtures.

Vapor Pressure of Low Volatility Compounds:

Another important area of Dr. Widegren’s research is the measurement of vapor pressures for low-volatility compounds. This work has included measurements on taggants for explosives (where vapor pressures are important for detection), biodiesel esters (where vapor pressures are needed for bio-refinery design), and organic aerosol formers (where vapor pressures are needed for climate modeling). The technique used to make these vapor pressure measurements is the concatenated gas saturation method.

Thermal Stability of Fuels:

Dr. Widegren also does research on the thermal stability of fuels. For example, kerosene-based rocket propellants serve the dual roles of fuel and coolant in modern rocket engines. Prior to combustion, the rocket propellant circulates through channels in the wall of the thrust chamber. Thus, the fuel carries heat away from the wall and maintains a safe wall temperature. This process, commonly referred to as regenerative cooling, exposes the fuel to high temperatures. For this reason, the thermal stability of the fuel is a key design parameter for specifying its performance. Dr. Widegren has measured the thermal stability of the kerosene-based rocket propellants RP-1 and RP-2, and has studied the effects of stabilizing additives on RP-2.

Other areas of current work include the measurement of enthalpies of adsorption for energetic compounds on construction materials (like concrete), and the permeation of energetic compounds through polymer barriers (like soda bottles).


2010 NIST Safety Award

2005 PREP Postdoctoral Fellowship, University of Colorado/NIST

2003 National Academy of Sciences/National Research Council (NAS/NRC) Postdoctoral Fellowship

2001 Union Carbide Corporation's Student Innovation Recognition Award

1994 Merck Award for the outstanding chemistry graduate


Thermophysical Properties of Polyol Ester Lubricants

Thomas J. Bruno, Tara J. Fortin, Marcia L. Huber, Arno D. Laesecke, Eric W. Lemmon, Elisabeth Mansfield, Mark O. McLinden, Stephanie L. Outcalt, Richard A. Perkins, Kimberly N. Urness, Jason A. Widegren
This report summarizes the results of work performed for the Naval Air Warfare Center Aircraft Division by the National Institute of Standards and Technology

Thermal Decomposition Kinetics of Polyol Ester Lubricants

Kimberly N. Urness, Raina V. Gough, Jason A. Widegren, Thomas J. Bruno
Synthetic lubricants are widely used for applications that require high-thermal and oxidative stability. In order to facilitate new designs and applications for
Created September 19, 2019, Updated June 7, 2020