Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Henri Lezec

Henri Lezec is a NIST Fellow and  Project Leader in the Photonics and Plasmonics Group of the Physical Measurement Laboratory (PML) at NIST. He received B.S., M.S. and Ph.D. degrees in Electrical Engineering from the Massachusetts Institute of Technology (MIT). Following postdoctoral research at NEC Fundamental Research Laboratories in Tsukuba, Japan, he worked as an applications specialist for Micrion and FEI Corporations in both Germany and in the USA. He subsequently worked as as Associate Faculty Member and  Research Director at the Centre National de la Recherche Scientifique (CNRS), Louis Pasteur University in Strasbourg, France, and as Visiting Research Associate at  the California Institute of Technology (Caltech).

He has investigated a broad range of topics associated with the interaction of light with nanoscale structures. He is widely known for his research observing and explaining how plasmons can control the propagation of light through nanoscale apertures, and for creating and measuring metamaterials (materials that have a negative refractive index). His research in the PML focuses on nanoplasmonics, nanophotonics, and nanofabrication with focused ion beams; he is currently leading  projects in the areas of visible and ultraviolet frequency metamaterials and metasurfaces, and well as exploring fundamental mechanisms and practical applications of optical forces on metals .

Lezec is a prolific writer of important publications and a sought-after invited speaker. He has published over 150 papers, including three letters in Nature and five in Science. His papers have an h-index of 50 and  have been cumulatively cited over 28,000 times, with 5 papers receiving more than 1000 citations, and another 33  receiving over 100 citations. He has 43 granted patents, including 18 U.S. patents. His work has been recognized with a fellowship in the Optical Society of America in 2010, and with the award of the prestigious Julius Springer Prize for Applied Physics in 2011.

Selected Programs/Projects

Selected Publications

  • Diffracted Evanescent Wave Model for Enhanced and Supressed Optical Transmission through Subwavelength Hole Arrays, H. J. Lezec and T. Thio, Optics Express 12(16), 3629 (2004).
  • Beaming Light from a Subwavelength Aperture, H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297(5582), 820 (2002).
  • Negative Refraction at Visible Frequencies, H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316(5823), 430 (2007). 
  • All-optical Modulation by Plasmonic Excitation of CdSe Quantum Dots, D. Pacifici, H. J. Lezec, and H. A. Atwater, Nature Photonics 1(7), 402 (2007).
  • All-angle negative refraction and active flat lensing of ultraviolet light, T. Xu, A. Agrawal, M. Abashin, and H.J. Lezec, Nature 497,470 (2013)

Publications

Ultra-compact visible light depolarizer based on dielectric metasurface

Author(s)
Yilin Wang, Wenqi Zhu, Cheng Zhang, Qingbin Fan, Lu Chen, Henri J. Lezec, Amit K. Agrawal, Ting Xu
With rapid development towards shrinking the size of traditional photonic systems such as cameras, spectrometers, displays and illumination systems, there is an

Nano-opto-electro-mechanical switches operated at CMOS-level voltages

Author(s)
Christian Haffner, Andreas Joerg, Michael Doderer, Daniel Chelladurai, Felix Mayor, Comsin Ioan Roman, Yuriy Fedoryshyn, Mikael Mazur, Maurizio Burla, Henri J. Lezec, Vladimir A. Aksyuk, Juerg Leuthold
Reprogrammable optical networks that operate in symbiosis with CMOS electronics promise to advance technologies such as optical neural networks. However
Created July 30, 2019