Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Edward Hagley (Fed)

Dr. Edward Hagley is a physicist working under contract in the Ultraviolet Radiation Group of the Sensor Science Division in the Physical Measurment Laboratory.   Dr. Hagley started working at NIST in January 1997, and since that time has worked on many varied projects.

In 1997, worked in the laboratory of the 1997 Nobel Prize winner William D. Phillips to study Bose-Einstein condensation.  Designed and fabricated the magnetic time-orbiting-potential (TOP) trap that was used to produce condensates for the first time in that lab.  After installing the TOP trap and optimizing the experimental setup, achieved Bose-Einstein condensation of sodium in December of 1997.  Using this setup our team, demonstrated the first road to BEC without using rf evaporation, pioneered both normal and Bragg diffraction of BECs (matter waves), created an Atom Laser, measured the coherence of a BEC, pioneered non-linear atom optics/four-wave mixing of matter waves, demonstrated a matter-wave Talbot effect, developed a Mach-Zehnder matter-wave interferometer, developed phase engineering of condensates, and demonstrated phase-coherent amplification of matter waves.

Designed and constructed a wavelength division multiplexing (WDM) laboratory and testbed in the Information Technology Laboratory (ITL).  In particular, developed methods to characterize very dense WDM fiber optic networks with close spacing at the optical level in order to advance NIST's role in the fast-paced industry of telecommunications.  Constructed a four-wavelength system that has already been used to transport digital video.

Designed and built a high-speed quantum cryptography testbed employing a secure single-photon transmission channel that derives its security from the "no cloning" theorem of quantum mechanics.

Currently responsible for upgrading and maintaining the Synchrotron Ultraviolet Radiation Facility (SURF III), a high-energy (up to 400 MeV) electron storage ring that produces synchrotron radiation from the infrared to the Extreme Ultra-Violet (EUV).  The SURF III synchrotron radiation spectrum can be calculated exactly, making the facility very useful for calibrating everything from photodiodes to NASA satellites. SURF III is also used for damage studies that examine how optical properties of next-generation, 13 nm (EUV) lithographic mirrors evolve in time.

Honors and Awards:

  • Co-recipient of 2002 Edward U. Condon Award
  • Co-recipient of 2002 Archie Mahan Prize
  • Co-recipient of NIST's 2001 Judson C. French award
  • Guest lecturer at University of Tokyo, Japan, December 2000
  • Invited to give a lecture series on BEC at the Shanghai Institute of Optics and Fine Machinery of the Chinese Academy of Science, October 16-18, 1999
  • Kastler-Brossel (ENS) Post Doctoral Fellow, 1996-1997
  • NATO-NSF Post Doctoral Fellow, 1995-1996
  • Chateau-Briand Post Doctoral Fellow, 1994-1995

Selected Publications

Four-Wave Mixing With Matter Waves

Lu Deng, Edward W. Hagley, J Wen, M Trippenbach, Y B. Band, Paul S. Julienne, J E. Simsarian, Kristian Helmerson, S L. Rolston, William D. Phillips
The advent of the laser as an intense, coherent light source gave birth to nonlinear optics, which now plays an important role in many areas of science and

A Well Collimated Quasi-Continuous Atom Laser

Edward W. Hagley, Lu Deng, M M. Kozuma, J Wen, Kristian Helmerson, S L. Rolston, William D. Phillips
We demonstrate extraction of sodium atoms from a trapped Bose-Einstein condensate (BEC) using a coherent stimulated Raman process. Optical Raman pulses drive


Created May 31, 2018, Updated December 8, 2022