Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Douglas Alan Bennett (Fed)

Douglas Bennett is a research physicist and project leader in the Quantum Sensors Group within the Quantum Electromagnetics Division at NIST. His research primarily focuses on the development of scalable readout for high sensitivity cryogenic and quantum sensors. Other current research interests include superconducting devices, x-ray astrophysics, and quantum information. He has authored or coauthored over 100 publications, and has received several awards, including an R&D100 award and NIST/DOC Silver and Bronze medals.

Publications

Application of hard x-ray and gamma-ray TES microcalorimeters at an accelerator facility

Author(s)
Takeshi Saito, Shinji Okada, Yuichi Toyoma, Toshiyuki Azuma, Gonçalo Baptista, Daniel Becker, Douglas Bennett, William Doriese, Joseph Fowler, Johnathon Gard, Tadashi Hashimoto, Ryota Hayakawa, Tasuku HAYASHI, Yuto Ichinohe, Josef Imrek, Paul Indelicato, Tadaaki Isobe, Sohtaro Kanda, Naritoshi Kawamura, John Mates, Yasuhiro Miyake, Kelsey Morgan, Hirofumi Noda, Galen O'Neil, Takuma Okumura, Nancy Paul, Daniel Schmidt, Kouichiro Shimomura, Patrick Strasser, Daniel Swetz, Tadayuki Takahashi, Motonobu Tampo, Joel Ullom, Izumi Umegaki, Joel Weber, Shinya Yamada, Daikang Yan
The x-ray spectroscopy of the muonic atom has attracted atomic, nuclear, and particle physicists since its discovery. The properties of a muonic atom, such as

EMI susceptibility of a differential time-division SQUID multiplexing circuit for TES readout

Author(s)
Malcolm Durkin, Douglas Bennett, William Doriese, Johnathon Gard, Johannes Hubmayr, Richard Lew, Erin Maloney, Carl Reintsema, Robinjeet Singh, Daniel Schmidt, Joel Ullom, Leila Vale, Michael Vissers
Time Division multiplexing (TDM) using superconducting quantum interference devices (SQUIDs) is being developed to read out Transition-edge sensor arrays for

Kinetic inductance current sensor for visible to near-infrared wavelength transition-edge sensor readout

Author(s)
Paul Szypryt, Douglas Bennett, Ian Fogarty Florang, Joseph Fowler, Jiansong Gao, Andrea Giachero, Ruslan Hummatov, Adriana Lita, John Mates, Sae Woo Nam, Daniel Swetz, Joel Ullom, Michael Vissers, Jordan Wheeler
Single-photon detectors based on the superconducting transition-edge sensor are used in a number of visible to near-infrared applications, particularly for

Few-electron highly charged muonic Ar atoms verified by electronic K xrays

Author(s)
Takuma Okumura, Toshiyuki Azuma, Douglas Bennett, W. Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Johnathon Gard, Tadashi Hashimoto, Ryota Hayakawa, Yuto Ichinohe, Paul Indelicato, Tadaaki Isobe, Sohtaro Kanda, Daiji Kato, Miho Katsuragawa, Naritoshi Kawamura, Yasushi Kino, Nao Kominato, Yasuhiro Miyake, Kelsey Morgan, Hirofumi Noda, Galen O'Neil, Shinji Okada, Kenichi Okutsu, Nancy Paul, Carl D. Reintsema, Toshiki Sato, Dan Schmidt, Kouichiro Shimomura, Patrick Strasser, Daniel Swetz, Tadayuki Takahashi, Shinichiro Takeda, Soshi Takeshita, Motonobu Tampo, Hideyuki Tatsuno, Tong Xiao-Min, Joel Ullom, Shin Watanabe, Shinya Yamada, Takuma Yamashita
Electronic K x rays emitted by muonic Ar atoms in the gas phase were observed using a superconducting transition-edge-sensor microcalorimeter. The high

Effects of Stray Magnetic Field on Transition-edge Sensors in Gamma-ray Microcalorimeters

Author(s)
Mark Keller, Abigail Wessels, Dan Becker, Douglas Bennett, Matthew Carpenter, Mark Croce, Jozsef Imrek, Johnathon Gard, John Mates, Kelsey Morgan, Nathan Ortiz, Dan Schmidt, Katherine Schreiber, Daniel Swetz, Joel Ullom
Superconducting transition-edge sensors (TESs) used in x-ray and γ-ray microcalorimeters suffer degraded performance if cooled in a magnetic field B sufficient
Created July 30, 2019, Updated October 11, 2023