An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
David Hoogerheide, Joseph Dura, Brian B. Maranville, Charles F. Majkrzak
Liquid cells are an increasingly common sample environment for neutron reflectometry experiments and are critical for measuring the properties of materials at
John Unguris, D. Tulchinsky, Michael H. Kelley, Julie Borchers, Joseph Dura, Charles Majkrzak, S. Y. Hsu, R. Loloee, W. P. Pratt, J. Bass
The magnetic microstructure responsible for the metastable high resistance state of weakly coupled, as-prepared [Co(6nm)/Cu(6nm)]20 multilayers was analyzed
Kevin N. Pritchard, Jean Philippe Chabot, R. Robucci, F. S. Choa, A. Osovizky, Jeffrey B. Ziegler, Louis E. Binkley, Peter Tsai, Nancy Hadad, M. Jackson, C. Hurlbut, George M. Baltic, Charles Majkrzak, Nicholas C. Maliszewskyj
A 6LiF:ZnS(Ag) based cold neutron detector with wavelength shifting (WLS) fibers and SiPM photodetector was developed at the NIST Center for Neutron Research
Wangchun Chen, Ross W. Erwin, Peter Tsai, Md. T. Hassan, Nancy Hadad, Charles F. Majkrzak
A design for a radio-frequency (RF) neutron spin flipper obtained from magneto-static and neutron spin transport simulations is presented. The RF flipper
Kevin N. Pritchard, Jean Philippe Chabot, Peter Tsai, R. Roubucci, F. S. Choa, A. Osovizky, Jeffrey B. Ziegler, Louis E. Binkley, Nancy Hadad, M. Jackson, C. Hurlbut, George M. Baltic, Charles Majkrzak, Nicholas C. Maliszewskyj
A 6LiF:ZnS(Ag) based cold neutron detector with wavelength shifting (WLS) fibers and SiPM photodetector was developed at the NIST Center for Neutron Research