Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Zero-energy modes and gate-tunable gap in graphene on hexagonal boron nitride

Published

Author(s)

Markus Kindermann, Bruno Uchoa, David L. Miller

Abstract

In this article, we derive an effective theory of graphene on a hexagonal boron nitride (h-BN) substrate. We show that the h-BN substrate generically opens a spectral gap in graphene despite the lattice mismatch. The origin of that gap is particularly intuitive in the regime of strong coupling between graphene and its substrate, when the low-energy physics is determined by the topology of a network of zero-energy modes. For twisted graphene bilayers, where inversion symmetry is present, this network percolates through the system and the spectrum is gapless. The breaking of that symmetry by h-BN causes the zero-energy modes to close into rings. The eigenstates of these rings hybridize into flat bands with gaps in between. The size of this band gap can be tuned by a gate voltage and it can reach the order of magnitude needed to confine electrons at room temperature.
Citation
Physical Review B
Volume
86
Issue
11

Keywords

graphene, boron nitride, band gap

Citation

Kindermann, M. , Uchoa, B. and Miller, D. (2012), Zero-energy modes and gate-tunable gap in graphene on hexagonal boron nitride, Physical Review B, [online], https://doi.org/10.1103/PhysRevB.86.115415 (Accessed October 14, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created September 12, 2012, Updated October 12, 2021
Was this page helpful?