NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Brian J. Kirby, Joseph E. Davies, Kai Liu, Shannon Watson, G. T. Zimanyi, Robert D. Shull, Paul A. Kienzle, Julie A. Borchers
Abstract
It has been theoretically predicted that depth-grading the magnetic anisotropy in perpendicular magnetic media should reduce the field required to write data, without affecting the thermal stability. To study this prediction, we have produced a series of Co/Pd multilayers featuring depth-dependent Co layer thickness. Polarized neutron reflectometry directly shows that the Co thickness grading results in a corresponding gradient in the perpendicular magnetic anisotropy. Magnetometry measurements then reveal that the anisotropy gradient promotes domain nucleation upon magnetization reversal - a clear demonstration of the effectiveness of graded anisotropy in reducing the write-field for perpendicular magnetic media materials.
Kirby, B.
, , J.
, Liu, K.
, Watson, S.
, , G.
, Shull, R.
, Kienzle, P.
and Borchers, J.
(2010),
Vertically Graded Anisotropy in Co/Pd Multilayers, Physical Review Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904132
(Accessed October 21, 2025)