Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Effect of Concentration on R134a/Al2O3 Nanolubricant Mixture Boiling on a Reentrant Cavity Surface

Published

Author(s)

Mark A. Kedzierski

Abstract

This paper quantifies the influence of Al2O3 nanoparticles on the pool boiling performance of R134a/polyolester mixtures on a Turbo-BII-HP boiling surface. Nanolubricants with 10 nm diameter Al2O3 nanoparticles of various volume fractions (1.6 %, 2.3 %, and 5.1 %) in the base polyolester lubricant were mixed with R134a at two different mass fractions (0.5 % and 1 %). The study showed that nanolubricants can improve R134a boiling on a reentrant cavity surface as long as the nanoparticles remain well dispersed in the lubricant and are at sufficiently large concentration. For example, three of the refrigerant/nanolubricant mixtures with the smallest nanoparticle mass fraction exhibited average enhancements over the entire heat flux range of approximately 10 %. However, when the nanoparticle mass fraction was increased to a point that likely encouraged agglomeration, an average heat transfer degradation of approximately 14 % resulted. An existing model was used to predict the boiling.
Citation
International Journal of Refrigeration

Keywords

additives, aluminum oxide, boiling, enhanced heat transfer, nanolubricant, nanotechnology, refrigerants, refrigerant/lubricant mixtures, structured surface

Citation

Kedzierski, M. (2014), Effect of Concentration on R134a/Al2O3 Nanolubricant Mixture Boiling on a Reentrant Cavity Surface, International Journal of Refrigeration (Accessed October 14, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created November 23, 2014, Updated February 19, 2017
Was this page helpful?