NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Kristine A. Bertness, Alexana Roshko, Norman A. Sanford, Joy Barker, Albert Davydov
Abstract
We have identified crystal growth conditions in gas-source molecular beam epitaxy (MBE) that lead to spontaneous formation of GaN nanowires with high aspect ratio on Si (1 1 1) substrates. The nanowires were oriented along the GaN c-axis and normal to the substrate surface. Unlike in many other reports of GaN nanowire growth, no metal catalysts were used. Low growth rates at substrate temperatures near 820 1C were combined with high nitrogen flux (partially dissociated with RF plasma excitation) to form well-separated GaN wires with diameters from 50 to 250 nm in diameter and lengths ranging from 2 to 7 υm. The nanowires grew out of an irregular matrix layer containing deep faceted holes. X-ray diffraction indicated that the wires were fully relaxed and aligned to the silicon substrate. The growth morphology was strongly affected by the presence of Al and Be. The changes suggest that surface diffusion is a primary driving force in the growth of GaN nanowires with MBE.
Bertness, K.
, Roshko, A.
, Sanford, N.
, Barker, J.
and Davydov, A.
(2006),
Spontaneously grown GaN and AlGaN nanowires, Journal of Crystal Growth, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=32042
(Accessed October 3, 2025)