NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Thermophysical Properties of Gaseous Tungsten Hexafluoride From Speed-of-Sound Measurements
Published
Author(s)
John J. Hurly
Abstract
The speed of sound was measured in gaseous WF6 using a highly precise acoustic resonance technique. The data span the temperature range from 290 to 420 K and the pressure range from 50 kPa to the lesser of 300 kPa or 80 % of the sample s vapor pressure. At 360 K and higher temperatures, the data were corrected for a slow chemical reaction of the WF6 within the apparatus. The speed-of-sound data have a relative standard uncertainty of 0.005%. The data were analyzed to obtain the ideal-gas heat capacity as a function of the temperature with a relative standard uncertainty of 0.1 %. These heat capacities are in reasonable agreement with those determined from spectroscopic data. The speed-of-sound were fitted by virial equations of state to obtain the temperature dependent density virial coefficients. Two virial coefficient models were employed, one based on square-well intermolecular potentials, and the second based on a hard-core Lennard-Jones intermolecular potential. The resulting virial equations reproduced the sound-speed data to within 0.005 % and may be used to calculate vapor densities with relative uncertainties of 0.1 % or less. The hard-core Lennard-Jones potential was used to estimate the viscosity and the thermal conductivity of dilute WF6. The predicted viscosities agree with published data to within 5 % and can be extrapolated reliably to higher temperatures.
Hurly, J.
(2000),
Thermophysical Properties of Gaseous Tungsten Hexafluoride From Speed-of-Sound Measurements, International Journal of Thermophysics
(Accessed October 24, 2025)