NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
We investigate the electronic structure of several double quantum dot systems: (I) hetero-dot artificial molecules built from two CdS chemically synthesized nanocrystals and (ii) two vertically stacked pyramidal self-organized InAs/GaAs quantum dots. The calculations are performed using the empirical tight-binding approach. The results of calculations show significant coupling between the nanocrystals that form quantum-dot molecule. When two quantum dots are close enough, the strong coupling can split and reorder energy levels, change state symmetries and make substantial changes in optical spectra. Formation of double-dot states having bonding and antibonding character by analogy to diatomic molecules is shown.
Citation
Physica E-Low-Dimensional Systems & Nanostructures
Volume
Vo. 17
Issue
No. 1-4
Pub Type
Journals
Keywords
electronic structure, nanocrystals, quantum dots
Citation
Jaskolski, W.
, Zielinski, M.
and Bryant, G.
(2003),
Electronic Properties of Quantum-Dot Molecules, Physica E-Low-Dimensional Systems & Nanostructures
(Accessed October 1, 2025)