Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Elastic Scattering Loss of Atoms from Colliding Bose-Einstein Condensate Wave Packets

Published

Author(s)

Y B. Band, M Trippenbach, J P. Burke, Paul S. Julienne

Abstract

Bragg diffraction of atoms by light waves has been used to create high momentum components in a Bose-Einstein condensate. Collisions between atoms from two distinct momentum wavepackets cause elastic scattering that can remove a significant fraction of atoms from the wavepackets and cause the formation of a spherical shell of scattered atoms. This process can not be described by the Gross-Pitaevskii equation. We develop a slowly varying envelope technique for including the effects of this mechanism into the condensate dynamics. Three-dimensional numerical calculations are presented for two experimental situations: passage of a moving daughter condensate through a non-moving parent condensate, and four-wave mixing of matter waves.
Citation
Physical Review Letters
Volume
84
Issue
No. 24

Keywords

Bose-Einstein condensation, elastic scattering, mean-field effects, nonlinear dynamics

Citation

Band, Y. , Trippenbach, M. , Burke, J. and Julienne, P. (2000), Elastic Scattering Loss of Atoms from Colliding Bose-Einstein Condensate Wave Packets, Physical Review Letters (Accessed October 11, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created May 31, 2000, Updated October 12, 2021
Was this page helpful?