NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Calculation of Transition Probabilities Using Multiconfiguration Dirac-Fock Method
Published
Author(s)
Yong Sik Kim, J P. Desclaux, Paul Indelicato
Abstract
The performance of the multiconfiguraton Dirac-Fock (MCDF) method in calculating transition probabilities of atoms is reviewed. In general, the MCDF wave functions will lead to transition probabilities accurate to ~ 10% or better for strong, electric-dipole allowed transitions for small atoms. However, it is more difficult to get reliable transition probabilities for weak transitions. Also, some MCDF wave functions for a specific J quantum number may not reduce to the appropriate nonrelativistic limit for the L and S quantum numbers. Transition probabilities calculated from such MCDF wave functions for nonrelativistically forbidden transitions may become unreliable. Remedies for such cases are discussed.
, Y.
, Desclaux, J.
and Indelicato, P.
(1997),
Calculation of Transition Probabilities Using Multiconfiguration Dirac-Fock Method, Journal of the Korean Physical Society, Taejon, KO
(Accessed October 16, 2025)