NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Surface States in Passivated, Unpassivated and Core/Shell Nanocrystals: Electronic Structure and Optical Properties
Published
Author(s)
Garnett W. Bryant, W Jaskolski
Abstract
Surface effects significantly influence the functionality of semiconductor nanocrystals. A theoretical understanding of these surface effects requires models capable of describing surface details at an atomic scale, passivation with molecular ligands, and few-monolayer capping shells. We present an atomistic tight-binding theory of the electronic structure and optical properties of passivated, unpassivated and core/shell nanocrystals to study these surface effects.
Proceedings Title
Quantum Dots, Nanoparticles and Nanowires, Symposium || Quantum Dots, Nanoparticles and Nanowires | Materials Research Society
Volume
789
Conference Dates
December 1-3, 2003
Conference Title
Materials Research Society Symposium Proceedings
Pub Type
Conferences
Keywords
nanocrystal, optical properties, quantum dots, tight-binding theory
Citation
Bryant, G.
and Jaskolski, W.
(2004),
Surface States in Passivated, Unpassivated and Core/Shell Nanocrystals: Electronic Structure and Optical Properties, Quantum Dots, Nanoparticles and Nanowires, Symposium || Quantum Dots, Nanoparticles and Nanowires | Materials Research Society
(Accessed October 10, 2025)