NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
The 1.27 m O2 Continuum Absorption in O2/CO2 Mixtures
Published
Author(s)
Gerald T. Fraser, Walter J. Lafferty
Abstract
The collision-induced, near-infrared O2 continuum band overlapping the weak α1δg - X3ς-g, v=O -0, 1.27 m discrete band of O2 has been investigated in O2/CO2 mixtures at room temperature (T=296 K) for total densities from 1.8 to 9.3 times that of an ideal gas under standard conditions (T=273.15 K and P =101.325 kPa), i.e., from 1.8 to 9.3 amagats. Absorption spectra were recorded at 0.5 cm-1 resolution using a Fourier-transform spectrometer and an 84-m optical pathlength through the gas sample. A least-squares analysis of the integrated band strength, Stotal = SO2 PO2 =SO2-O2 PO22+SO2-CO2PO2PCO2, as a function of carbon dioxide density, PCO2, and oxygen density, PO2, yields SO2-CO2 = 2.95(40) x 10-43 cm-2(molecule/cm3)-2 [i.e., 2.13(29) x 1004 cm-2 amagat-2]. The SO2-CO2 coefficient is approximately three times greater than the corresponding SO2-N2 coefficient determined from studies of O2/N2 mixtures, illustrating the efficiency of large electric multipolar moments in inducing continuum absorption in the 1.27 m band of O2. Furthermore, the results suggest the potential importance of water, with its large electric dipole moment, in enhancing the collision-induced absorption bands of O2 and N2 in the atmosphere. Indeed, the apparent inability of radiative-transfer models to accurately account for the increased atmospheric absorption present when water-vapor levels increase may be due in part to the neglect of the intensity enhancement of a number of continuum bands and the far wings of discrete bands by water collisions.
Fraser, G.
and Lafferty, W.
(2001),
The 1.27 m O<sub>2</sub> Continuum Absorption in O<sub>2</sub>/CO<sub>2</sub> Mixtures, Journal of Geophysical Research-Atmospheres
(Accessed October 10, 2025)