Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Room Temperature Active Regenerative Magnetic Refrigeration: Magnetic Nanocomposites

Published

Author(s)

F Shir, L Yanik, Lawrence H. Bennett, Edward Della Torre, Robert D. Shull

Abstract

Nanocomposites have several advantages as a refrigerant for 100 -300 K applications, compared to the other common methods of assembling a magnetic refrigeration bed, such as a layered arrangement of the thermal bed or mixing of different magnetic materials. This article discusses the thermodynamics and heat transfer analysis of an ideal and real active magnetic regenerative refrigeration cycle. An algorithm for the choice of optimum parameters is derived.
Citation
Journal of Applied Physics
Volume
93
Issue
No. 10

Keywords

heat capacity, heat transfer, magnetic refrigeration, magnetocaloric effect, nanocomposites, regenerative cycle

Citation

Shir, F. , Yanik, L. , Bennett, L. , Della Torre, E. and Shull, R. (2003), Room Temperature Active Regenerative Magnetic Refrigeration: Magnetic Nanocomposites, Journal of Applied Physics (Accessed October 14, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created May 14, 2003, Updated October 12, 2021
Was this page helpful?