NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Subsolidus Phase Relationships in the AO-AI2O3-Nb2O5(A=Ca, Sr) Systems
Published
Author(s)
Julia Y. Chan, Wilma Feb-Ayala, J. M. Loezos, L D. Rotter, Lyle E. Levine, Richard G. Geyer
Abstract
Dielectric ceramics for wireless communications exhibiting modest permittivity, high quality factor (Q), and near-zero temperature coefficient are needed for high-frequency, high power applications. Efforts are in progress to replace Ta2O5-based ceramics with less costly oxides that exhibit similar properties. Phase equilibria relations in the CaO-Al2O3-Nb2O5 and SrO-Al2O3-Nb2O5 systems have been determined at 1350-1525 C in air. Phase assemblages were determined by X-ray powder diffraction methods at room temperature. The existence of the double perovskites, A2AlNbO6 (A=Ca, Sr), were confirmed in both ternary systems. In the SrO-Al2O3-Nb2O5 system, a previously unreported ternary phase was found to occur between Sr2AlNbO6 and SrO. A series of cryolite-type solid solutions, Sr3(Sr1-xNb2-x)O9-3/2x (0
Chan, J.
, Feb-Ayala, W.
, Loezos, J.
, Rotter, L.
, Levine, L.
and Geyer, R.
(2021),
Subsolidus Phase Relationships in the AO-AI<sub>2</sub>O<sub>3</sub>-Nb<sub>2</sub>O<sub>5</sub>(A=Ca, Sr) Systems, Sigma Xi Web Page
(Accessed October 8, 2025)