NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Simulations of Filled Polymers on Multiple Length Scales
Published
Author(s)
Francis W. Starr, S C. Glotzer
Abstract
We present simulation results of the effect of nanoscopic and micron-sized fillers on the structure, dynamics, and mechanical properties of polymer melts and blends. At the smallest length scales, we use molecular dynamics simulations to study the effect of a single nano-filler on the structure and dynamics of the surrounding melt. We use time-dependent Ginzburg-Lanau simulations to model the mesoscale phase separation of an ultra-thin blend film in the presence of an immobilized filler particle. Finally we present some preliminary finite-element calculations used to predict the effect of mesoscale structure on macroscopic ultra-thin film mechanical properties.
Proceedings Title
Filled and Nanocomposite Polymer Materials, Symposium | | Filled and Nanocomposite Polymer Materials | Materials Research Society
Starr, F.
and Glotzer, S.
(2001),
Simulations of Filled Polymers on Multiple Length Scales, Filled and Nanocomposite Polymer Materials, Symposium | | Filled and Nanocomposite Polymer Materials | Materials Research Society
(Accessed October 27, 2025)