NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Servoed World Models as Interfaces Between Robot Control Systems and Sensory Data
Published
Author(s)
Ernest Kent, James S. Albus
Abstract
A hierarchical robot sensory system being developed for industrial robotics is described. At each level of the hierarchy, sensory interpretative processes are guided by expectancy-generating modeling processes. The modeling processes are driven by a priori knowledge (object prototypes), by knowledge of the robot's movements (feed-forward from the control system), and by feedback from the interpretative processes (prior state of the sensory world). At the lowest level, the senses (vision, proximity, tactile, force, joint angle, etc.) are handled separately; above this level, they are integrated into a multi-model world model. At successively higher levels, the interpretative and modeling processes describe the world with successively higher order constructs, and over successively longer time periods. Each level of the modeling hierarchy provides output, in parallel, to guide the corresponding levels of a hierarchical robot control system.
Kent, E.
and Albus, J.
(1984),
Servoed World Models as Interfaces Between Robot Control Systems and Sensory Data, Robotica, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=820202
(Accessed October 11, 2025)