NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Low probability of detection underwater acoustic communications using direct-sequence spread-spectrum
Published
Author(s)
Wen-Bin Yang, T.C. Yang
Abstract
Direct-sequence spread-spectrum underwater acoustic communications are analyzed in this paper between communication nodes, at least one of which is moving. At-sea data are analyzed which show that the phase change due to source motion is significant. The differential phase between two adjacent symbols is often larger than the phase difference between symbols. One finds that the simple cross-correlation method that detects the inter-symbol phase change without requiring channel equalization does not work when the source or receiver is moving. A pair of energy detectors that are insensitive to the phase fluctuations, are proposed, whose outputs are used to determine whether adjacent symbols are of the same kind or opposite kind. The method shows good results for input signal-to-noise ratio (SNR) as low as 8 dB. The purpose of low SNR communications is to minimize the probability of detection (PD) by an interceptor. PD is analyzed as a function of range to the interceptor assuming a source level high enough to communicate to an intended (friendly) receiver. The analysis is conducted in a typical shallow water environment. A broadband energy detector is employed assuming signal bandwidth is known.
Yang, W.
and Yang, T.
(2008),
Low probability of detection underwater acoustic communications using direct-sequence spread-spectrum, Journal of the Acoustical Society of America, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=152173
(Accessed October 16, 2025)