NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Electronic Effects in Length Distribution of Atom Chains
Published
Author(s)
Jason Crain, Mark D. Stiles, Joseph A. Stroscio, Daniel T. Pierce
Abstract
Gold deposited on Si(553) leads to self assembly of atomic chains, which are broken into finite segments by atomic defects. Scanning tunneling microscopy is used to investigate the distribution of chain lengths and the correlation between defects separating the chains. The length distribution reveals incommensurate oscillations that are linked to the electronic scattering vectors at the Fermi surface of the surface states. The pair-wise correlation function between defects shows longer range correlations than a prediction from the chain length distribution, which assumes nearest neighbor interactions alone. These correlations indicate a coupling between chains.
Crain, J.
, Stiles, M.
, Stroscio, J.
and Pierce, D.
(2006),
Electronic Effects in Length Distribution of Atom Chains, Physical Review Letters
(Accessed October 14, 2025)