NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Absolute Absorptivity of Single-walled Carbon Nanotubes Employing a Pyroelectric Detector
Published
Author(s)
Katie Hurst, Anne Dillon, John H. Lehman
Abstract
Optical properties are important for determining fundamental characteristics of carbon single-walled nanotube (SWNT) samples including purity, chirality, and tube diameter. Previously, we have estimated the volume fraction of metallic versus semiconducting tubes for highly purified SWNT bucky-paper on a pyroelectric detector from spectral responsivity measurements and an effective medium approximation to determine the dielectric function.1 Pyroelectric detector-based measurements are based on the thermalization of photons within the SWNT coating and provide a robust technique for measuring absolute absorptivity at normal incidence. Alternatively, we perform transmissivity measurements of SWNTs by employing a gold black coated pyroelectric detector. Spectral responsivity measurements are made by direct substitution against a NIST calibrated detector such that quantitative changes in the volume fraction and purity of SWNT samples are revealed. These results will be compared to specular transmissivity measurements made by UV-VIS spectrometry. Raman spectroscopy will also serve to verify nanotube properties. 1.K.E.H. Gilbert, J.H. Lehman, A.C. Dillon and J.L. Blackburn Appl. Phys. Lett. 88, 143122 (2006).
Hurst, K.
, Dillon, A.
and Lehman, J.
(2006),
Absolute Absorptivity of Single-walled Carbon Nanotubes Employing a Pyroelectric Detector, APS meeting
(Accessed October 22, 2025)