NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Monolayer Formation of PBLG-PEO Block Copolymers at the Air-Water Interface
Published
Author(s)
Y Park, Y W. Choi, SK Park, C S. Cho, Michael J. Fasolka, Daeson Sohn
Abstract
Physicochemical properties of PBLG (poly(gamma-benzyl-L-glutamate))-PEO (poly(ethylene oxide)) diblock copolymers composed of PBLG as the hydrophobic rod component and PEO as the hydrophilic component were investigated at the air-water interface. Surface pressure-area isotherms obtained by the Wilhelmy plate method provide several variables such as molecular size, compressibility of PEO, and the free energy change of the PBLG-PEO block copolymer. GE-1 (M-w of PBLG:PEO = 103,700:12,000), with a relatively longer rod, has negative temperature effects and GE-3 (M-w of PBLG:PEO = 8400:12,000), with a relatively shorter rod, shows a positive temperature effect because of the large entropy loss.These competitions were based on the block size of PBLG and PEO and were affected by various microstructures of the PBLG-PEO diblock copolymer. Monolayer aggregations transferred onto mica from the air-water interface were analyzed with AFM. AFM images of GE-1 monolayers show cylindrical micelles, but the self-assembled structure has many large domains. The monolayer of GE-2 (M-w of PBLG:PEO = 39,800:12,000), which has a medium size rod, forms a spherical structure at the air-water interface. Monolayers of GE-3, with a short rod length, form bilayer structures. These results demonstrate that the microstructures of PBLG-PEO diblock copolymers are related to free energy changes between rod and coil blocks.
Park, Y.
, Choi, Y.
, Park, S.
, Cho, C.
, Fasolka, M.
and Sohn, D.
(2004),
Monolayer Formation of PBLG-PEO Block Copolymers at the Air-Water Interface, 283 (2), Undefined, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=852533
(Accessed October 8, 2025)