NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Micromechanical Detectors for Local Field Measurements Based on Ferromagnetic Resonance
Published
Author(s)
Albrecht Jander, John M. Moreland, Pavel Kabos
Abstract
Ferromagnetic resonance (FMR) measurements were performed on micron-size thin-film samples integrated onto a micromechanical detector. The FMR response is coupled to cantilever motion in one of three ways. 1) Measure the change in torque on the sample in a uniform field. The FMR precession reduces the static magnetic moment of the sample with a resultant change in torque. 2) Measure the damping torque acting on the FMR precession. 3) Measure the energy absorbed in FMR using a bimaterial cantilever as calorimeter sensor. Our instrument is capable of measuring the FMR response in NiFe samples as small as 2x10-11 cm3 in ambient conditions with a signal-to-noise ratio of 100. In addition we have demonstrated that this system can be used as a quantitative scanning probe magnetic field microscope. Using the magnetic field sensitivity of the FMR response in a small ferromagnetic particle we have achieved 50 A/m field resolution on 20 mm length scales. Both dc fields and microwave fields were imaged.
Jander, A.
, Moreland, J.
and Kabos, P.
(2001),
Micromechanical Detectors for Local Field Measurements Based on Ferromagnetic Resonance, Journal of Applied Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=4529
(Accessed October 11, 2025)