NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
High-frequency noise measurements in spin-valve Devices
Published
Author(s)
N. A. Stutzke, S. L. Burkett, Stephen E. Russek
Abstract
High-frequency magnetic noise in magnetoresistive devices being developed for read-sensor and magnetic random access memory applications may present fundamental limitations on the performance of sub-micrometer magnetic devices. High- frequency magnetic noise (HFN) arises from intrinsic thermal fluctuations of the device magnetization. High-frequency noise spectroscopy provides a powerful tool to characterize the dynamics and response of small multilayer magnetic devices. In this study, the noise characteristics of micrometer-dimension spinvalves have been investigated at frequencies in the range of 0.1-6 GHz. At frequencies below this range 1/f noise dominates. HFN measurements, as a function of t bias current and longitudinal magnetic field are obtained for IrMn exchange-biased spin valves using a 50 GHz spectrum analyzer, low-noise amplifier, and a microwave probing system. The magnetic noise is obtained by taking the difference between the noise spectrum of the device in a saturated and unsaturated state. The data can be fit to simple models that predict the noise power to be proportional to the imaginary part of the free-layer magnetic susceptibility. There are some important differences between the high-frequency noise measurements and direct measurements of the device susceptibility (both at the device and wafer level). The noise measurements show a smaller damping parameter (a smaller ferromagnetic resonance linewidth) and additional features due to the presence of nonuniform modes.
Stutzke, N.
, Burkett, S.
and Russek, S.
(2003),
High-frequency noise measurements in spin-valve Devices, Journal of Vacuum Science and Technology B, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=30863
(Accessed October 8, 2025)