NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Sheng Lin-Gibson, G Schmidt, Jai A. Pathak, Charles C. Han
Abstract
Poly(ethylene oxide) and Laponite, a synthetic hectorite clay, form highly viscoelastic solutions in water. Above a certain clay concentration, these solutions can be described as physical crosslinked networks where clay platelets undergo equilibrium adsorption/desorption with polymer chains. Complex fluids such as these containing anisotropic clays have generated significant interests both in shear induced structural changes and in network dynamics. The interactions of polymer/clay solutions were characterized using dynamic rheology measurements and stress relaxation experiments.
Citation
Symposium on Polymers for Micro and Nanoelectronics
Lin-Gibson, S.
, Schmidt, G.
, Pathak, J.
and Han, C.
(2002),
Rheology of Poly(ethylene oxide) Clay Solutions, Symposium on Polymers for Micro and Nanoelectronics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=852010
(Accessed October 20, 2025)