NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
The effect of thermal oxidation on laser-induced photoelectron emission during tensile deformation of polycrystalline aluminum
Published
Author(s)
M Cai, S C. Langford, Richard E. Ricker, Lyle E. Levine, J T. Dickinson
Abstract
Many metals emit electrons when exposed to UV radiation from excimer lasers (photon energies 4 eV to 8 eV). Deformation can significantly affect the intensity of these emissions. In the case of reactive metals, these emissions are also altered by the presence of surface oxides. We have characterized the effect of thermal oxides on laser-induced photoelectron emission from commercially pure, polycrystalline aluminum with a view toward using these emissions as a probe of deformation processes. The thickness of oxides produced by a range of annealing treatments in air was determined by x-ray photoelectron spectroscopy. Time-of-flight measurements on photoelectrons from these surfaces under 248 nm irradiation (5 eV photons) show two peaks: a fast peak which we attributed to electrons from metallic aluminum, and a slower peak, which may be due to electrons from interface states. Both peaks are attenuated by sufficiently thick oxides. We show that the sensitivity of the photoelectron signals to deformation-induced changes can be optimized by an appropriate choice of oxide thickness. With an appropriate oxide, the total photoelectron intensity is a sensitive probe of deformation-related processes during tensile testing.
Cai, M.
, Langford, S.
, Ricker, R.
, Levine, L.
and Dickinson, J.
(2010),
The effect of thermal oxidation on laser-induced photoelectron emission during tensile deformation of polycrystalline aluminum, Journal of Applied Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904291
(Accessed October 11, 2025)