NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
P J. Phillips, P J. Flynn, W T. Scruggs, K W. Bowyer, J S. Chang, K Hoffman, J Marques, J Min, W Worek
Abstract
Over the last couple of years, face recognition researchers have been developing new techniques, such as recognition from three-dimensional and high resolution imagery. These developments are being fueled by advances in computer vision techniques, computer design, sensor design, and interest in fielding face recognition systems. These techniques hold the promise of reducing the error rate in face recognition systems by an order of magnitude over FRVT 2002 results. The Face Recognition Grand Challenge (FRGC) is designed to achieve this performance goal by making available to researchers a data corpus of 50,000 images and a challenge problem containing six experiments. The data consists of 3D scans and high resolution still imagery. The imagery is taken under controlled and uncontrolled conditions. This paper describes the data corpus and challenge problems, and presents baseline performance and preliminary results on natural statistics of facial imagery.
Proceedings Title
IEEE Computer Society International Conference on Computer Vision and Pattern Recognition
Phillips, P.
, Flynn, P.
, Scruggs, W.
, Bowyer, K.
, Chang, J.
, Hoffman, K.
, Marques, J.
, Min, J.
and Worek, W.
(2005),
Overview of the Face Recognition Grand Challenge, IEEE Computer Society International Conference on Computer Vision and Pattern Recognition, san diego, CA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=150264
(Accessed October 2, 2025)