NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
IMPACT OF CLASSICAL ASSUMPTIONS IN MODELLING A MICROCHANNEL GAS COOLER
Published
Author(s)
Santiago Martinez-Ballester, Jose M. Corberan, Jose Gonzalvez-Macia, Piotr A. Domanski
Abstract
Most of the current air-to-refrigerant heat exchanger models use the classic ε-NTU approach. These models do not account for 2D longitudinal heat conduction in the tube and the longitudinal heat conduction in the fin. These models, also do not account for the heat conduction between different tubes, which is a consequence of the widely employed adiabaticfin- tip assumption. This paper presents a more fundamental numerical approach to heat exchanger modelling which takes into account the 2D longitudinal heat conduction in any element, does not apply the fin theory with its adiabatic-fin-tip assumption, and captures a more detailed representation of air properties. The new model uses a segment-by-segment approach and applies a 2D discretization for each segment. The goal of the present work is to evaluate the impact of all the assumptions used widely in the models based in the ε-NTU methodology. The paper includes a presentation of the numerical scheme, model validation, and a parametric study which tests the impact of the traditional heat exchanger model assumptions applied for a microchannel gas cooler with CO2 as working fluid. The study revealed significant differences in capacity predictions depending on the ε-NTU relationship adopted. Longitudinal heat conduction turned out to be not negligible only when the air-side heat transfer is high, with errors about 2.5%. Large errors in capacity prediction of individual tubes occurred due to the adiabatic-fin-tip assumption when the neighbouring tubes were of different temperature.
Martinez-Ballester, S.
, Corberan, J.
, Gonzalvez-Macia, J.
and Domanski, P.
(2011),
IMPACT OF CLASSICAL ASSUMPTIONS IN MODELLING A MICROCHANNEL GAS COOLER, International Journal of Refrigeration, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=907650
(Accessed October 18, 2025)