NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Behavior of Primary Radicals During Thermal Degradation of Poly(Methyl Methacrylate)
Published
Author(s)
Takashi Kashiwagi, A Inabi, Anthony P. Hamins
Abstract
The behavior of the primary radicals formed from the random scission of anionically polymerized poly(methyl methacrylate). PMMA, during thermal degradation is investigated by a theoretical and experimental study. The theoretically calculated relationship between the degree of polymerization and the conversion agrees well with the experimentally determined relationship if the random scission produces one polymer radical and one polymer molecule with an unsaturated bond at a chain end. It is proposed that the primary radical rearranges to form the polymer molecule with the unsaturated bond at a chain end. Two different degradation paths for this rearrangement are proposed via beta scisison at the C-C bond of the pendant group instead of beta scisison, as previously thought, at the backbond C-C bond. The products from the proposed degradation paths are CO, CO2, CH3OH, AND CH4. The products for anionically polymerized PMMA samples with three different values of initial molecular weight are measured by a mass spectrometer. The quantities of CO and CO2 are observed to decrease with an increase in initial molecular weight. This confirms that the two proposed degradation paths for the thermal degreadation of PMMA are quite plausible.
Kashiwagi, T.
, Inabi, A.
and Hamins, A.
(1988),
Behavior of Primary Radicals During Thermal Degradation of Poly(Methyl Methacrylate), Polymer Degradation and Stability, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909540
(Accessed October 11, 2025)