NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Signal Detection Efficiency in Multiphoton Ionization Flame Measurements
Published
Author(s)
K C. Smyth, P. Tjossem
Abstract
Resonance-enhanced multiphoton ionization (MPI)has been successfully applied to the detection of numerous free radicals and stable species in flames, including H atom,1 -6 0 atom, 3' 4' 7 C atom, 8'9 CH-,9 CO,5 "10 02,9 NO.W11,1 2 P.,'1 3 CH. 3,8 "145"1HCO.,15,16 C2 0,5 and trans-,3-butadiene.17 Multiphoton ionization methods exhibit high sensitivity and are the only practical optical approach for monitoring minor species when fluorescence quantum yields are low, such as for the methyl (CH3 .) radical. Low fluorescence quantum yields are also expected for larger hydrocarbon radicals of combustion interest, such as ethynyl (C2H-), vinyl (C2H3O), and phenyl (C6H5O). Active investigation to find suitable electronic transitions for MPI detection of these species is currently underway, since they are presently observable only in environments where molecular beam mass spectrometric sampling can be utilized, for example, in low pressure premixed flames.
Smyth, K.
and Tjossem, P.
(1990),
Signal Detection Efficiency in Multiphoton Ionization Flame Measurements, Applied Optics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912545
(Accessed October 8, 2025)