NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
3-Aminopropyltriethoxysilane Functionalization and Biotinylation of 4H-SiC for Immobilization of Streptavidin
Published
Author(s)
Elissa H. Williams, Albert Davydov, John A. Schreifels, Mulpuri V. Rao, Abhishek Motayed, Siddarth Sundaresan, Peter Bocchini, Lee J. Richter, Gheorghe Stan, Kristen L. Steffens, Rebecca A. Zangmeister
Abstract
(0001) 4H-SiC was functionalized with 3-aminopropyltriethoxysilane (APTES) and subsequently biotinylated for the immobilization of streptavidin. Atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), ellipsometry, fluorescence microscopy, and contact angle measurements were utilized to determine the structure, thickness, wettability, and reactivity of the resulting surfaces after each functionalization step. Initially, silicon carbide surfaces were exposed to an APTES solution for 5 min, 1 hr, and 16 hrs. It was determined that 1 hr and 16 hr exposure result in a multilayer APTES film on the SiC surface, whereas a 5 min exposure yields a near monolayer of APTES that is optimum for the subsequent biotinylation and streptavidin immobilization steps. A covalently bound layer of biotin was deposited on the 5 min APTES-functionalized SiC samples followed by successful conjugation of streptavidin. It was also shown that there was significant non-specific (electrostatic) binding of streptavidin to APTES functionalized SiC, thus revealing the importance of a uniform biotinylation step prior to streptavidin attachment. It was also proven that the biotinylated SiC surface is selective for only the streptavidin protein. The experimental results demonstrate that the APTES-functionalized and biotinylated SiC surfaces have the potential to be employed as a biosensing platform for the selective detection of streptavidin molecules.
Williams, E.
, Davydov, A.
, Schreifels, J.
, Rao, M.
, Motayed, A.
, Sundaresan, S.
, Bocchini, P.
, Richter, L.
, Stan, G.
, Steffens, K.
and Zangmeister, R.
(2012),
3-Aminopropyltriethoxysilane Functionalization and Biotinylation of 4H-SiC for Immobilization of Streptavidin, Langmuir, [online], https://doi.org/10.1016/j.apsusc.2012.02.137
(Accessed October 9, 2025)