Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Effects of Processing on Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location

Published

Author(s)

Nikolas W. Hrabe, Timothy P. Quinn, Ryan Kircher

Abstract

Selective electron beam melting (EBM) is a layer-by-layer additive manufacturing technique that shows great promise for fabrication of medical devices and aerospace components. Before its potential can be fully realized, however, a deeper understanding of processing-microstructure-properties relationships is necessary. Titanium alloy (Ti-6Al-4V) samples were built in a newly developed, unique geometry to allow accurate investigation of the following intra-build processing parameters: energy input, orientation, and location. Microstructure evaluation (qualitative prior-β grain size, quantitative α lath thickness), tensile testing, and Vickers microhardness was performed for each sample. For a wide range of energy input (speed factor 30-40), small differences in mechanical properties (2 % change ultimate tensile strength (UTS), 3 % change yield strength (YS)) were measured. Vertically built samples were found to have no difference in UTS or YS compared to horizontally built samples, but the % EL was 30 % lower. Orientation within the x-y plane as well as location were found to have less than 3% effect on mechanical properties, and it is possible a second order effect of thermal mass contributed to these results.
Citation
Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing
Volume
573

Keywords

Electron beam melting, titanium alloy, tensile, microhardness, microstructure

Citation

Hrabe, N. , Quinn, T. and Kircher, R. (2013), Effects of Processing on Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, [online], https://doi.org/10.1016/j.msea.2013.02.065 (Accessed October 9, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created June 20, 2013, Updated November 10, 2018
Was this page helpful?