NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Self-similar grain size distribution in three dimensions: A stochastic treatment
Published
Author(s)
Geoffrey B. McFadden, C.S. Pande
Abstract
In this paper, a stochastic formulation of three dimensional grain growth is presented. It employs the recent extension of von Neumann law to three dimensions As expected our analysis leads to a Fokker-Planck equation for the size distribution, which should yield a unique self-similar asymptotic state that could be reached from any arbitrary initial state. The approximate solution of the Fokker-Planck equation presented here is based on the assumption of quasi-stationary distributions reached in the long time limit. The resulting grain size distributions, obtained both numerically and analytically, are shown to be in good agreement with each other and also with those obtained from computer simulations, indicating the validity of the stochastic approach.
McFadden, G.
and Pande, C.
(2010),
Self-similar grain size distribution in three dimensions: A stochastic treatment, ACTA Materialia, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=901760
(Accessed October 10, 2025)