NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Infrared Transfer Radiometer for Broadband and Spectral Calibration of Space Chambers
Published
Author(s)
Timothy M. Jung, Adriaan C. Carter, Solomon I. Woods, Simon G. Kaplan, Raju V. Datla
Abstract
The Low-Background Infrared (LBIR) facility at NIST has recently completed construction of an infrared transfer radiometer with an integrated cryogenic Fourier transform spectrometer (Cryo-FTS). This mobile system can be deployed to customer sites for broadband and spectral calibrations of space chambers and low-background HWIL testbeds. The Missile Defense Transfer Radiometer (MDXR) has many of the capabilities of a complete IR calibration facility and will replace our existing filter-based transfer radiometer (BXR) as the NIST standard detector deployed to MDA facilities. The MDXR features numerous improvements over the BXR, including: a cryogenic Fourier transform spectrometer, an on-board absolute cryogenic radiometer (ACR), an internal blackbody reference, and an integrated collimator. The Cryo-FTS can be used to measure high resolution spectra from 4 to 20 micrometers, using a Si:As blocked-impurity-band (BIB) detector. The on-board ACR can be used for self-calibration of the MDXR BIB as well as for absolute measurements of infrared sources. A set of filter wheels and a rotating polarizer within the MDXR allow for filter-based and polarization-sensitive measurements. The optical design of the MDXR makes both radiance and irradiance measurements possible and enables calibration of both divergent and collimated sources. Details of the various MDXR components will be presented as well as initial testing data on their performance.
Jung, T.
, Carter, A.
, Woods, S.
, Kaplan, S.
and Datla, R.
(2010),
Infrared Transfer Radiometer for Broadband and Spectral Calibration of Space Chambers, Proceedings of SPIE, Orlando, FL, US, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=905479
(Accessed October 9, 2025)