NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Statistical Prediction of Sealant Modulus Change due to Outdoor Weathering
Published
Author(s)
Christopher C. White, Kar T. Tan, Donald L. Hunston, Adam L. Pintar, James J. Filliben
Abstract
Recently a statistically based model has been created to predict the change in modulus for a sealant exposed to outdoor weathering. The underlying high precision data supporting this model was obtained using the NIST SPHERE (Simulated Photo degradation by High Energy Radiant Exposure). The NIST SPHERE can independently precisely control each of the four primary weathering conditions: Temperature, Humidity, Ultraviolet Radiation and Mechanical Loading. The time-dependent modulus of the sealant samples were characterized using ASTM C1735-11 before and after each exposure. The resulting statically based model produces two major results: a statistical determination of the importance of each of the weathering conditions and the ability to generate a prediction of modulus change for any location, if a historical weather file is available. These two sealant models have shown that all four weathering factors, listed above, are significant contributors to modulus change in sealant. Additionally, the geographical predictions allow for independent verification of these models.
White, C.
, Tan, K.
, Hunston, D.
, Pintar, A.
and Filliben, J.
(2013),
Statistical Prediction of Sealant Modulus Change due to Outdoor Weathering, Natural and Artificial Ageing of Polymers
(Accessed October 14, 2025)