NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A unitary operator that satisfies the constant Yang-Baxter equation immediately yields a unitary representation of the braid group Bn for every n ≥ 2. If we view such an operator as a quantum-computational gate, then topological braiding corresponds to a quantum circuit. A basic question is when such a representation affords universal quantum computation. In this work, we show how to classically simulate these circuits when the gate in question belongs to certain families of solutions to the Yang-Baxter equation. These include all of the qubit (i.e., d = 2) solutions, and some simple families that include solutions for arbitrary d ≥ 2. Our main tool is a probabilistic classical algorithm for efficient simulation of a more general class of quantum circuits. This algorithm may be of use outside the present setting.
Proceedings Title
9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014)
Jordan, S.
, Alagic, G.
and Bapat, A.
(2014),
Classical simulation of Yang-Baxter gates, 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014), Singapore, -1
(Accessed October 16, 2025)