NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Near-ground-state transport of trapped-ion qubits through a multidimensional array
Published
Author(s)
Dietrich G. Leibfried, Rodney B. Blakestad, Christian Ospelkaus, Aaron Vandevender, Janus Wesenberg, Michael J. Biercuk, David J. Wineland
Abstract
We have demonstrated transport of 9Be+ ions through a 2D Paul-trap X-junction array while maintaining the ions near the motional ground-state of their local potential well. We expand on the first report of the experiment in [1], including a detailed discussion of how the transport potentials were calculated. Two main mechanisms that caused motional excitation during transport are explained, along with the methods used to mitigate such excitation. We achieved a two-orders of magnitude decrease in the motional excitation over the results in [1]. The effect of a mu-metal shield on qubit coherence is also reported. Finally, we examine a method for exchanging energy between multiple motional modes on the few-quanta level, which could be useful for cooling motional modes without directly accessing the modes with lasers. These results establish that how trapped ions can be transported in a large-scale quantum processor with high fidelity.
Leibfried, D.
, Blakestad, R.
, Ospelkaus, C.
, Vandevender, A.
, Wesenberg, J.
, Biercuk, M.
and Wineland, D.
(2011),
Near-ground-state transport of trapped-ion qubits through a multidimensional array, Physical Review A, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=908718
(Accessed October 8, 2025)