NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
100-Fold Reduction of Electric-Field Noise in an Ion Trap Cleanded with In Situ Argon-Ion-Beam Bombardment
Published
Author(s)
Dustin Hite, Yves Colombe, Andrew C. Wilson, Kenton R. Brown, Ulrich J. Warring, Robert Jordens, John D. Jost, David P. Pappas, Dietrich Leibfried, David J. Wineland, Kyle McKay
Abstract
Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in scalable quantum computers. The physical origin of this electric field noise is not fully understood, but experimental evidence suggests that it emanates from the surface of the trap electrodes. In this study, we have investigated the role that adsorbates play by identifying contaminant overlayers, developing an in situ Ar+- beam cleaning procedure, and measuring ion heating rates before and after cleaning the trap electrodes' surfaces. We find a reduction of two orders of magnitude in heating rate after cleaning.
Hite, D.
, Colombe, Y.
, Wilson, A.
, Brown, K.
, Warring, U.
, Jordens, R.
, Jost, J.
, Pappas, D.
, Leibfried, D.
, Wineland, D.
and McKay, K.
(2012),
100-Fold Reduction of Electric-Field Noise in an Ion Trap Cleanded with In Situ Argon-Ion-Beam Bombardment, Physical Review Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=910379
(Accessed October 1, 2025)