NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Demonstration of a dressed-state phase gate for trapped ions
Published
Author(s)
Ting Rei Tan, John P. Gaebler, Ryan S. Bowler, Yiheng Lin, John D. Jost, Dietrich G. Leibfried, David J. Wineland
Abstract
We demonstrate a trapped ion entangling gate scheme proposed by Bermudez et~al [Phys. Rev. A 85, 040302 (2012)]. Simultaneous excitation of a strong carrier and a single sideband transition enables deterministic creation of entangled states. The method works for magnetic field-insensitive states, is robust against thermal excitations, includes dynamical decoupling from qubit dephasing errors, and provides simplifications in experimental implementation compared to some other entangling gates with trapped ions. We achieve a Bell state fidelity of 0.974(4) and identify the main sources of error.
, T.
, Gaebler, J.
, Bowler, R.
, Lin, Y.
, Jost, J.
, Leibfried, D.
and Wineland, D.
(2013),
Demonstration of a dressed-state phase gate for trapped ions, Physical Review Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=913171
(Accessed October 10, 2025)