NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Lida Xu, Mahmoud Mehrabad, Christopher Flower, Gregory Moille, Alessandro Restelli, Daniel Suarez-Forero, Yanne Chembo, Sunil Mittal, Kartik Srinivasan, Mohammad Hafezi
Abstract
Mode locking is foundational to nonlinear optics, enabling advances in metrology, spectroscopy, and communications. However, it remains unexplored in nonharmonic, multi-timescale regimes. Here, we realize on-chip multi-timescale synchronization using topological photonics. We design a two-dimensional lattice of 261 coupled silicon nitride ring resonators that supports nested mode-locked states with fast ( approximately 1 terahertz) single-ring and slow ( approximately 3 gigahertz) topological super-ring timescales. We observe clear signatures of multi-timescale mode locking, including a quadratic distribution of pump noise across both azimuthal mode families, consistent with theory. These findings are supported by near-transform–limited repetition beats and the emergence of periodic temporal patterns on the slow timescale. The edge-confined states show distinct dynamics from bulk and single-ring modes, enabling clear identification. Our results establish topological frequency combs as a robust platform for independently tunable, lattice-scale synchronization, opening new directions for exploring the interplay of nonlinearity and topology in integrated photonics.
Xu, L.
, Mehrabad, M.
, Flower, C.
, Moille, G.
, Restelli, A.
, Suarez-Forero, D.
, Chembo, Y.
, Mittal, S.
, Srinivasan, K.
and Hafezi, M.
(2025),
On-chip multi-timescale spatiotemporal optical synchronization, Science Advances, [online], https://doi.org/10.1126/sciadv.adw7696, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=959090
(Accessed October 8, 2025)