NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Retrieval of Raman signals from broadband CARS intensity measurements using an autoencoder trained with a prior excitation function
Published
Author(s)
ryan muddiman, Kevin O' Dwyer, Charles Camp, Bryan Hennelly
Abstract
Broadband coherent anti-Stokes Raman scattering (BCARS) is capable of producing high-quality Raman spectra spanning broad bandwidths, 400–4000 cm−1, with millisecond acquisition times. Raw BCARS spectra, however, are a coherent combination of vibrationally resonant (Raman) and non-resonant (electronic) components that may challenge or degrade chemical analyses. Recently, we demonstrated a deep convolutional autoencoder network, trained on pairs of simulated BCARS-Raman datasets, which could retrieve the Raman signal with high quality under ideal conditions. In this work, we present a new computational system that incorporates experimental measurements of the laser system spectral and temporal properties, combined with simulated susceptibilities. Thus, the neural network learns the mapping between the susceptibility and the measured response for a specific BCARS system. The network is tested on simulated and measured experimental results taken with our BCARS system.
Muddiman, R.
, O' Dwyer, K.
, Camp, C.
and Hennelly, B.
(2023),
Retrieval of Raman signals from broadband CARS intensity measurements using an autoencoder trained with a prior excitation function, Analyst, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936436
(Accessed October 9, 2025)