NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Simulation of Neutron Dark-Field Data for Grating-Based Interferometers
Published
Author(s)
Caitlyn Wolf, Youngju Kim, Paul A. Kienzle, Pushkar Sathe, Michael Daugherty, Peter Bajcsy, Daniel Hussey, Kathleen Weigandt
Abstract
Hierarchical structures and heterogeneous materials are found in many natural and engineered systems including additive manufacturing, alternative energy, biology and polymer science. Though the structure–function relationship is important for developing more advanced materials, structural characterization over broad length scales often requires multiple complementary measurements. Neutron far-field interferometry aims to enable multi-scale characterization by combining the best of neutron imaging with small-angle neutron scattering (SANS) via dark-field imaging. The microstructure, nominally from 1 nm to 10 mm, is averaged over each volume element (50 mm)3 in the sample, resulting in a 'tomographic SANS' measurement. Unlike in small-angle scattering, there are few analytical models to fit dark-field imaging data to extract properties of the microstructure. Fortunately, the dark field and SANS are related through a single Hankel transform. In this work, we discuss the development of a Python-based library, correlogram-tools, that makes use of existing small-angle scattering models and a numerical implementation of the Hankel transform to simulate dark-field interferometry data. We demonstrate how this software can be used to inform researchers of viable sample sets for interferometry experiments, analyze interferometry data, and simulate raw and reconstructed interferometry images for the training of more advanced segmentation models and analysis protocols.
Wolf, C.
, Kim, Y.
, Kienzle, P.
, Sathe, P.
, Daugherty, M.
, Bajcsy, P.
, Hussey, D.
and Weigandt, K.
(2024),
Simulation of Neutron Dark-Field Data for Grating-Based Interferometers, Journal of Applied Crystallography, [online], https://doi.org/10.1107/S1600576724001201, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=956889
(Accessed October 8, 2025)