NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Robustness of the projected squeezed state protocol
Published
Author(s)
Byron Alexander, John J. Bollinger, Mark Tame
Abstract
Projected squeezed (PS) states are multipartite entangled states generated by unitary spin squeezing, followed by a quantum measurement and post-selection. They lead to an appreciable decrease in the state preparation time of the maximally entangled N-qubit Greenberger–Horne–Zeilinger (GHZ) state when compared to deterministic preparation by unitary transformations in physical systems where spin squeezing can be realized, such as ion, neutral atom, and superconducting qubits. Here we simulate the generation of PS states in non-ideal experimental conditions with relevant decoherence channels. By employing the Kraus operator method, and quantum trajectory method to reduce the computational complexity, we assess the quantum Fisher information and overlap fidelity with an ideal GHZ state. Our findings highlight PS states as useful metrological resources, demonstrating their increasing robustness against environmental effects with an increasing number of qubits.
Alexander, B.
, Bollinger, J.
and Tame, M.
(2024),
Robustness of the projected squeezed state protocol, Physical Review A, [online], https://doi.org/10.1103/PhysRevA.109.052614, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=956473
(Accessed October 9, 2025)