NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Memristive Response and Capacitive Spiking in Aqueous Ion Transport through Two-Dimensional Nanopore Arrays
Published
Author(s)
Yechan Noh, Alex Smolyanitsky
Abstract
In living organisms, information is processed in interconnected symphonies of ionic currents spiking through protein ion channels. As a result of dynamic switching of their conductive states, ion channels exhibit a variety of current–voltage nonlinearities and memory effects. Fueled by the promise of computing architectures entirely different from von Neumann, recent attempts to identify and harness similar phenomena in artificial nanofluidic environments focused on demonstrating analogue circuit elements with memory. Here we explore aqueous ionic transport through two-dimensional (2D) membranes featuring arrays of ion-trapping crown-ether-like pores. We demonstrate that for aqueous salts featuring ions with different ion–pore binding affinities, memristive effects emerge through coupling between the time-delayed state of the system and its transport properties. We also demonstrate a nanopore array that behaves as a capacitor with a strain-tunable built-in barrier, yielding behaviors ranging from current spiking to an ohmic response. By focusing on the illustrative underlying mechanisms, we demonstrate that realistically observable memory effects may be achieved in nanofluidic systems featuring crown-porous 2D membranes.
Noh, Y.
and Smolyanitsky, A.
(2024),
Memristive Response and Capacitive Spiking in Aqueous Ion Transport through Two-Dimensional Nanopore Arrays, Journal of Physical Chemistry Letters, [online], https://doi.org/10.1021/acs.jpclett.3c03156, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=956701
(Accessed October 9, 2025)