NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Effects of Deposition Sequence on Microstructural Formation in Additively Manufactured GRCop-42 / Alloy 718 Bimetallic Structures
Published
Author(s)
Andrew Iams, Tom Lienert, David Otazu, Monsuru Ramoni
Abstract
Although Cu-Cr-Nb alloys / superalloys bimetallic components for liquid rocket engine applications have been fabricated using additive manufacturing, a detailed understanding of their process-structure relation is currently lacking. To bridge this gap, GRCop-42 / Alloy 718 bimetallic structures were fabricated with two different deposition sequences, using powder feedstock with a laser-based directed energy deposition process. The deposition sequence resulted in significant variations in precipitate morphology, composition, and crystal structure within the GRCop-42, particularly at locations near the interface. When Alloy 718 was deposited first, dilution and convective mixing resulted in elevated Ni and Fe levels within the GRCop-42 deposit, which contributed to the formation of C14 (Cr, Ni, Fe)2Nb Laves and α-Cr phases. The anticipated C15 Cr2Nb precipitates were observed within the GRCop-42 material when the deposition sequence was reversed.
Iams, A.
, Lienert, T.
, Otazu, D.
and Ramoni, M.
(2023),
Effects of Deposition Sequence on Microstructural Formation in Additively Manufactured GRCop-42 / Alloy 718 Bimetallic Structures, Additive Manufacturing Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936381
(Accessed October 1, 2025)