NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Iron-sulfur clusters are involved in post-translational arginylation
Published
Author(s)
Verna Van, Janae Brown, Corin R. O’Shea, Hannah Rosenbach, Ijaz Mohamed, Nna-Emeka Ejimogu, Toan Bui, Veronika Szalai, Kelly Chacón, Ingrid Span, Aaron T. Smith
Abstract
Eukaryotic arginylation is an essential post-translational modification that both modulates protein stability and regulates protein half-life through the N-degron pathway. Arginylation is catalyzed by a family of enzymes known as the arginyl-tRNA transferases (ATE1s), which are conserved across the eukaryotic domain. Despite its conservation and importance, little is known regarding the structure, mechanism, and regulation of ATE1s. In this work, we have discovered that ATE1s bind a previously unknown [Fe-S] cluster that is conserved across evolution. We have extensively characterized the nature of this [Fe-S] cluster, and we show that the presence of the [Fe-S] cluster is linked to alterations in arginylation efficacy. Finally, we demonstrate that the ATE1 [Fe-S] cluster is oxygen sensitive, which could be a molecular mechanism of the N-degron pathway to sense oxidative stress. Thus, our data provide the framework of a cluster-based paradigm of ATE1 regulatory control.
Van, V.
, Brown, J.
, O’Shea, C.
, Rosenbach, H.
, Mohamed, I.
, Ejimogu, N.
, Bui, T.
, Szalai, V.
, Chacón, K.
, Span, I.
and Smith, A.
(2023),
Iron-sulfur clusters are involved in post-translational arginylation, Nature Communications, [online], https://doi.org/10.1038/s41467-023-36158-z, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932333
(Accessed October 13, 2025)