Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Record Level of Radio Frequency Signal Synthesis with Quantum-Based Accuracy Achieved

Record level of radio frequency (RF) signal synthesis with quantum-based accuracy achieved

NIST, in collaboration with CU Boulder faculty, published a paper titled: “RF Josephson Arbitrary Waveform Synthesizer with Integrated Superconducting Diplexers” demonstrating results that show a significant step toward a broadband, integrated, quantum-based microwave voltage source with useful power above -30 dBm.

This milestone creates new opportunities for improving measurements of high-accuracy RF voltage and power for modern high-speed communications components and instruments. NIST’s goal is to advance quantum-based standards for RF communications to eliminate costs and overhead in calibration and traceability chain measurements by providing self-calibrated, quantum-based standards and automated measurement capability to communication and instrument manufacturers.

The team is developing a quantum-defined superconducting programmable voltage source for generating microwave-frequency waveforms. The voltage source is an RF Josephson arbitrary waveform synthesizer (RF-JAWS) that utilizes a superconducting integrated circuit that is cooled to 4 K and is composed of an array of 4500 Josephson junctions. The researchers incorporated on-chip superconducting diplexers and integrated them with the RF-JAWS circuit to achieve an open-circuit signal of 22 mV rms at 1.005 GHz, which is a 25% increase in state-of-the-art. The use of integrated filtering enables 25% larger microwave amplitudes compared to the state-of-the-art thanks to a broader passband and lower loss. Measurements of the new circuit showed that it correctly synthesized the RF waveform with a signal amplitude that was based on quantum effects.

Paper Authors: 

Akim A. Babenko, Nathan E. Flowers-Jacobs, Gregor Lasser, Justus A. Brevik, Anna E. Fox, Paul D. Dresselhaus, Zoya Popović, and Samuel P. Benz

Released November 10, 2022, Updated February 3, 2025
Was this page helpful?