Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

A critical evaluation of indentation crack lengths in air

Published

Author(s)

Robert F. Cook

Abstract

A extensive overview is presented of Vickers indentation crack lengths in ceramics in air. Measurement of such crack lengths is one of the most common and powerful assessments of the fracture properties of ceramics and the overview provides a critical evaluation of observed behavior as functions of material type and indentation load, and an extensive basis for comparison of results from new materials and analyses. The overview considers single-crystals, polycrystals, transforming materials, glasses, and multi-phase materials, including cermets, glass-ceramics, and tooth enamel. The coverage extends over structural and electronic ceramics, including oxides, carbides, nitrides, and titanates. The data are presented in a single format for ease of interpretation in terms of idealized indentation fracture and for inter-material comparisons; most data are unique to this work, but the results of selected studies from the published literature are included. The overview considers the precision and accuracy of crack length measurements and demonstrates a simple quantitative evaluation and ranking scheme for ceramic fracture based on load adjusted crack length and cracking susceptibility. Indentation hardness and cracking threshold are also determined and related to the susceptibility. Material toughness is related to cracking susceptibility by fracture mechanics analyses: typical crack length measurements in air are shown to provide estimates of inert toughness with a relative uncertainty of ± 50 %.
Citation
Journal of the American Ceramic Society

Keywords

indentation, fracture, toughness, cracking susceptibility

Citation

Cook, R. (2019), A critical evaluation of indentation crack lengths in air, Journal of the American Ceramic Society (Accessed April 30, 2024)
Created November 13, 2019, Updated October 14, 2022