NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Magnetic-Field-Induced Dielectric Anomalies in Cobalt-Containing Garnets
Published
Author(s)
Abbey J. Neer, Joanna Milam-Guerrero, Veronika A. Fischer, Michelle Zheng, Nicole R. Spence, Clayton Cozzan, Mingqiang Gu, James M. Rondinelli, Craig Brown, Brent C. Melot
Abstract
We present a comparative study of the magnetic and crystal chemical proper-ties of two Co2+ containing garnets.CaY2Co2Ge3O12 and NaCa2Co2V3O12 both exhibit the onset of antiferromagnetic order at 8 K and 6 K as well as field-induced transitions around 7 T and 10 T, respectively that manifest as anomalies in the dielectric properties of the material. We perform detailed crystal-chemistry analyses and complimentary density functional theory calculations to show that very minor changes in the local environment of the Co-ions explain the differences in the two magnetic structures and their respective properties.
Neer, A.
, Milam-Guerrero, J.
, Fischer, V.
, Zheng, M.
, Spence, N.
, Cozzan, C.
, Gu, M.
, Rondinelli, J.
, Brown, C.
and Melot, B.
(2022),
Magnetic-Field-Induced Dielectric Anomalies in Cobalt-Containing Garnets, Inorganic Chemistry
(Accessed October 2, 2025)